ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.17128
69
5

Lies, Damned Lies, and Distributional Language Statistics: Persuasion and Deception with Large Language Models

22 December 2024
Cameron R. Jones
Benjamin Bergen
ArXivPDFHTML
Abstract

Large Language Models (LLMs) can generate content that is as persuasive as human-written text and appear capable of selectively producing deceptive outputs. These capabilities raise concerns about potential misuse and unintended consequences as these systems become more widely deployed. This review synthesizes recent empirical work examining LLMs' capacity and proclivity for persuasion and deception, analyzes theoretical risks that could arise from these capabilities, and evaluates proposed mitigations. While current persuasive effects are relatively small, various mechanisms could increase their impact, including fine-tuning, multimodality, and social factors. We outline key open questions for future research, including how persuasive AI systems might become, whether truth enjoys an inherent advantage over falsehoods, and how effective different mitigation strategies may be in practice.

View on arXiv
Comments on this paper