ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.16877
86
0

Reconsidering SMT Over NMT for Closely Related Languages: A Case Study of Persian-Hindi Pair

22 December 2024
Waisullah Yousofi
Pushpak Bhattacharyya
ArXivPDFHTML
Abstract

This paper demonstrates that Phrase-Based Statistical Machine Translation (PBSMT) can outperform Transformer-based Neural Machine Translation (NMT) in moderate-resource scenarios, specifically for structurally similar languages, like the Persian-Hindi pair. Despite the Transformer architecture's typical preference for large parallel corpora, our results show that PBSMT achieves a BLEU score of 66.32, significantly exceeding the Transformer-NMT score of 53.7 on the same dataset. Additionally, we explore variations of the SMT architecture, including training on Romanized text and modifying the word order of Persian sentences to match the left-to-right (LTR) structure of Hindi. Our findings highlight the importance of choosing the right architecture based on language pair characteristics and advocate for SMT as a high-performing alternative, even in contexts commonly dominated by NMT.

View on arXiv
Comments on this paper