ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.15519
67
0

PreNeT: Leveraging Computational Features to Predict Deep Neural Network Training Time

20 December 2024
Alireza Pourali
Arian Boukani
Hamzeh Khazaei
ArXivPDFHTML
Abstract

Training deep learning models, particularly Transformer-based architectures such as Large Language Models (LLMs), demands substantial computational resources and extended training periods. While optimal configuration and infrastructure selection can significantly reduce associated costs, this optimization requires preliminary analysis tools. This paper introduces PreNeT, a novel predictive framework designed to address this optimization challenge. PreNeT facilitates training optimization by integrating comprehensive computational metrics, including layer-specific parameters, arithmetic operations and memory utilization. A key feature of PreNeT is its capacity to accurately predict training duration on previously unexamined hardware infrastructures, including novel accelerator architectures. This framework employs a sophisticated approach to capture and analyze the distinct characteristics of various neural network layers, thereby enhancing existing prediction methodologies. Through proactive implementation of PreNeT, researchers and practitioners can determine optimal configurations, parameter settings, and hardware specifications to maximize cost-efficiency and minimize training duration. Experimental results demonstrate that PreNeT achieves up to 72% improvement in prediction accuracy compared to contemporary state-of-the-art frameworks.

View on arXiv
Comments on this paper