ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.14800
104
62

Asymptotic Equivalence for Nonparametric Regression

19 December 2024
Ion Grama
Michael Nussbaum
ArXivPDFHTML
Abstract

We consider a nonparametric model En,\mathcal{E}^{n},En, generated by independent observations Xi,X_{i},Xi​, i=1,...,n,i=1,...,n,i=1,...,n, with densities p(x,θi),p(x,\theta_{i}),p(x,θi​), i=1,...,n,i=1,...,n,i=1,...,n, the parameters of which θi=f(i/n)∈Θ\theta _{i}=f(i/n)\in \Theta θi​=f(i/n)∈Θ are driven by the values of an unknown function f:[0,1]→Θf:[0,1]\rightarrow \Theta f:[0,1]→Θ in a smoothness class. The main result of the paper is that, under regularity assumptions, this model can be approximated, in the sense of the Le Cam deficiency pseudodistance, by a nonparametric Gaussian shift model Yi=Γ(f(i/n))+εi,Y_{i}=\Gamma (f(i/n))+\varepsilon _{i},Yi​=Γ(f(i/n))+εi​, where ε1,...,εn\varepsilon_{1},...,\varepsilon _{n}ε1​,...,εn​ are i.i.d. standard normal r.v.'s, the function Γ(θ):Θ→R\Gamma (\theta ):\Theta \rightarrow \mathrm{R}Γ(θ):Θ→R satisfies Γ′(θ)=I(θ)\Gamma ^{\prime}(\theta )=\sqrt{I(\theta )}Γ′(θ)=I(θ)​ and I(θ)I(\theta )I(θ) is the Fisher information corresponding to the density p(x,θ).p(x,\theta ).p(x,θ).

View on arXiv
Comments on this paper