ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.12395
78
0

Sound Classification of Four Insect Classes

16 December 2024
Yinxuan Wang
Sudip Vhaduri
    VLM
ArXivPDFHTML
Abstract

The goal of this project is to classify four different insect sounds: cicada, beetle, termite, and cricket. One application of this project is for pest control to monitor and protect our ecosystem. Our project leverages data augmentation, including pitch shifting and speed changing, to improve model generalization. This project will test the performance of Decision Tree, Random Forest, SVM RBF, XGBoost, and k-NN models, combined with MFCC feature. A potential novelty of this project is that various data augmentation techniques are used and created 6 data along with the original sound. The dataset consists of the sound recordings of these four insects. This project aims to achieve a high classification accuracy and to reduce the over-fitting problem.

View on arXiv
Comments on this paper