ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.10429
72
7

GPTDrawer: Enhancing Visual Synthesis through ChatGPT

11 December 2024
Kun Li
Xinwei Chen
Tianyou Song
Hansong Zhang
Wenzhe Zhang
Qing Shan
ArXivPDFHTML
Abstract

In the burgeoning field of AI-driven image generation, the quest for precision and relevance in response to textual prompts remains paramount. This paper introduces GPTDrawer, an innovative pipeline that leverages the generative prowess of GPT-based models to enhance the visual synthesis process. Our methodology employs a novel algorithm that iteratively refines input prompts using keyword extraction, semantic analysis, and image-text congruence evaluation. By integrating ChatGPT for natural language processing and Stable Diffusion for image generation, GPTDrawer produces a batch of images that undergo successive refinement cycles, guided by cosine similarity metrics until a threshold of semantic alignment is attained. The results demonstrate a marked improvement in the fidelity of images generated in accordance with user-defined prompts, showcasing the system's ability to interpret and visualize complex semantic constructs. The implications of this work extend to various applications, from creative arts to design automation, setting a new benchmark for AI-assisted creative processes.

View on arXiv
Comments on this paper