ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.10244
77
0

Efficient Continual Pre-training of LLMs for Low-resource Languages

13 December 2024
Arijit Nag
Soumen Chakrabarti
Animesh Mukherjee
Niloy Ganguly
ArXivPDFHTML
Abstract

Open-source Large Language models (OsLLMs) propel the democratization of natural language research by giving the flexibility to augment or update model parameters for performance improvement. Nevertheless, like proprietary LLMs, Os-LLMs offer poorer performance on low-resource languages (LRLs) than high-resource languages (HRLs), owing to smaller amounts of training data and underrepresented vocabulary. On the other hand, continual pre-training (CPT) with large amounts of language-specific data is a costly proposition in terms of data acquisition and computational resources. Our goal is to drastically reduce CPT cost. To that end, we first develop a new algorithm to select a subset of texts from a larger corpus. We show the effectiveness of our technique using very little CPT data. In search of further improvement, we design a new algorithm to select tokens to include in the LLM vocabulary. We experiment with the recent Llama-3 model and nine Indian languages with diverse scripts and extent of resource availability. For evaluation, we use IndicGenBench, a generation task benchmark dataset for Indic languages. We experiment with various CPT corpora and augmented vocabulary size and offer insights across language families.

View on arXiv
Comments on this paper