ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.07226
82
0

Attention Head Purification: A New Perspective to Harness CLIP for Domain Generalization

10 December 2024
Yingfan Wang
Guoliang Kang
    VLM
ArXivPDFHTML
Abstract

Domain Generalization (DG) aims to learn a model from multiple source domains to achieve satisfactory performance on unseen target domains. Recent works introduce CLIP to DG tasks due to its superior image-text alignment and zeros-shot performance. Previous methods either utilize full fine-tuning or prompt-learning paradigms to harness CLIP for DG tasks. Those works focus on avoiding catastrophic forgetting of the original knowledge encoded in CLIP but ignore that the knowledge encoded in CLIP in nature may contain domain-specific cues that constrain its domain generalization performance. In this paper, we propose a new perspective to harness CLIP for DG, i.e., attention head purification. We observe that different attention heads may encode different properties of an image and selecting heads appropriately may yield remarkable performance improvement across domains. Based on such observations, we purify the attention heads of CLIP from two levels, including task-level purification and domain-level purification. For task-level purification, we design head-aware LoRA to make each head more adapted to the task we considered. For domain-level purification, we perform head selection via a simple gating strategy. We utilize MMD loss to encourage masked head features to be more domain-invariant to emphasize more generalizable properties/heads. During training, we jointly perform task-level purification and domain-level purification. We conduct experiments on various representative DG benchmarks. Though simple, extensive experiments demonstrate that our method performs favorably against previous state-of-the-arts.

View on arXiv
Comments on this paper