ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.04788
108
0

GUIDE: A Global Unified Inference Engine for Deploying Large Language Models in Heterogeneous Environments

28 January 2025
Yanyu Chen
Ganhong Huang
ArXivPDFHTML
Abstract

Efficiently deploying large language models (LLMs) in real-world scenarios remains a critical challenge, primarily due to hardware heterogeneity, inference framework limitations, and workloadthis http URLdeploying large language models (LLMs) in real-world scenarios remains a critical challenge, primarily due to hardware heterogeneity, inference framework limitations, and workload complexities. These challenges often lead to inefficiencies in memory utilization, latency, and throughput, hindering the effective deployment of LLMs, especially for non-experts. Through extensive experiments, we identify key performance bottlenecks, including sudden drops in memory utilization, latency fluctuations with varying batch sizes, and inefficiencies in multi-GPU configurations. These insights reveal a vast optimization space shaped by the intricate interplay of hardware, frameworks, and workload parameters. This underscores the need for a systematic approach to optimize LLM inference, motivating the design of our framework, GUIDE. GUIDE leverages dynamic modeling and simulation-based optimization to address these issues, achieving prediction errors between 9.9% and 42.3% for key metrics such as batch latency, TTFT, and decode throughput. By effectively bridging the gap between theoretical performance and practical deployment, our framework empowers practitioners, particularly non-specialists, to make data-driven decisions and unlock the full potential of LLMs in heterogeneous environments cheaply.

View on arXiv
Comments on this paper