ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.01794
237
0
v1v2 (latest)

IQA-Adapter: Exploring Knowledge Transfer from Image Quality Assessment to Diffusion-based Generative Models

2 December 2024
Khaled Abud
Sergey Lavrushkin
Alexey Kirillov
D. Vatolin
ArXiv (abs)PDFHTML
Main:8 Pages
25 Figures
Bibliography:4 Pages
8 Tables
Appendix:20 Pages
Abstract

Diffusion-based models have recently transformed conditional image generation, achieving unprecedented fidelity in generating photorealistic and semantically accurate images. However, consistently generating high-quality images remains challenging, partly due to the lack of mechanisms for conditioning outputs on perceptual quality. In this work, we propose methods to integrate image quality assessment (IQA) models into diffusion-based generators, enabling quality-aware image generation. First, we experiment with gradient-based guidance to optimize image quality directly and show this approach has limited generalizability. To address this, we introduce IQA-Adapter, a novel architecture that conditions generation on target quality levels by learning the relationship between images and quality scores. When conditioned on high target quality, IQA-Adapter shifts the distribution of generated images towards a higher-quality subdomain. This approach achieves up to a 10% improvement across multiple objective metrics, as confirmed by a subjective study, while preserving generative diversity and content. Additionally, IQA-Adapter can be used inversely as a degradation model, generating progressively more distorted images when conditioned on lower quality scores. Our quality-aware methods also provide insights into the adversarial robustness of IQA models, underscoring the potential of quality conditioning in generative modeling and the importance of robust IQA methods.

View on arXiv
Comments on this paper