97
0

Optimizing Domain-Specific Image Retrieval: A Benchmark of FAISS and Annoy with Fine-Tuned Features

Abstract

Approximate Nearest Neighbor search is one of the keys to high-scale data retrieval performance in many applications. The work is a bridge between feature extraction and ANN indexing through fine-tuning a ResNet50 model with various ANN methods: FAISS and Annoy. We evaluate the systems with respect to indexing time, memory usage, query time, precision, recall, F1-score, and Recall@5 on a custom image dataset. FAISS's Product Quantization can achieve a precision of 98.40% with low memory usage at 0.24 MB index size, and Annoy is the fastest, with average query times of 0.00015 seconds, at a slight cost to accuracy. These results reveal trade-offs among speed, accuracy, and memory efficiency and offer actionable insights into the optimization of feature-based image retrieval systems. This study will serve as a blueprint for constructing actual retrieval pipelines and be built on fine-tuned deep learning networks and associated ANN methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.