ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.01277
74
0

Streamlining the Action Dependency Graph Framework: Two Key Enhancements

2 December 2024
Joachim Dunkel
ArXiv (abs)PDFHTML
Abstract

Multi Agent Path Finding (MAPF) is critical for coordinating multiple robots in shared environments, yet robust execution of generated plans remains challenging due to operational uncertainties. The Action Dependency Graph (ADG) framework offers a way to ensure correct action execution by establishing precedence-based dependencies between wait and move actions retrieved from a MAPF planning result. The original construction algorithm is not only inefficient, with a quadratic worst-case time complexity it also results in a network with many redundant dependencies between actions. This paper introduces two key improvements to the ADG framework. First, we prove that wait actions are generally redundant and show that removing them can lead to faster overall plan execution on real robot systems. Second, we propose an optimized ADG construction algorithm, termed Sparse Candidate Partitioning (SCP), which skips unnecessary dependencies and lowers the time complexity to quasi-linear, thereby significantly improving construction speed.

View on arXiv
Comments on this paper