ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.00426
76
0

Few-Shot Domain Adaptation for Named-Entity Recognition via Joint Constrained k-Means and Subspace Selection

30 November 2024
Ayoub Hammal
Benno Uthayasooriyar
Caio Corro
ArXivPDFHTML
Abstract

Named-entity recognition (NER) is a task that typically requires large annotated datasets, which limits its applicability across domains with varying entity definitions. This paper addresses few-shot NER, aiming to transfer knowledge to new domains with minimal supervision. Unlike previous approaches that rely solely on limited annotated data, we propose a weakly supervised algorithm that combines small labeled datasets with large amounts of unlabeled data. Our method extends the k-means algorithm with label supervision, cluster size constraints and domain-specific discriminative subspace selection. This unified framework achieves state-of-the-art results in few-shot NER on several English datasets.

View on arXiv
Comments on this paper