ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.00225
93
0

Meta-learning Loss Functions of Parametric Partial Differential Equations Using Physics-Informed Neural Networks

29 November 2024
Michail Koumpanakis
Ricardo Vilalta
    AI4CE
ArXivPDFHTML
Abstract

This paper proposes a new way to learn Physics-Informed Neural Network loss functions using Generalized Additive Models. We apply our method by meta-learning parametric partial differential equations, PDEs, on Burger's and 2D Heat Equations. The goal is to learn a new loss function for each parametric PDE using meta-learning. The derived loss function replaces the traditional data loss, allowing us to learn each parametric PDE more efficiently, improving the meta-learner's performance and convergence.

View on arXiv
Comments on this paper