ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.00144
120
0

MPQ-Diff: Mixed Precision Quantization for Diffusion Models

28 November 2024
Rocco Manz Maruzzelli
Basile Lewandowski
Lydia Y. Chen
    DiffM
    MQ
ArXivPDFHTML
Abstract

Diffusion models (DMs) generate remarkable high quality images via the stochastic denoising process, which unfortunately incurs high sampling time. Post-quantizing the trained diffusion models in fixed bit-widths, e.g., 4 bits on weights and 8 bits on activation, is shown effective in accelerating sampling time while maintaining the image quality. Motivated by the observation that the cross-layer dependency of DMs vary across layers and sampling steps, we propose a mixed precision quantization scheme, MPQ-Diff, which allocates different bit-width to the weights and activation of the layers. We advocate to use the cross-layer correlation of a given layer, termed network orthogonality metric, as a proxy to measure the relative importance of a layer per sampling step. We further adopt a uniform sampling scheme to avoid the excessive profiling overhead of estimating orthogonality across all time steps. We evaluate the proposed mixed-precision on LSUN and ImageNet, showing a significant improvement in FID from 65.73 to 15.39, and 52.66 to 14.93, compared to their fixed precision quantization, respectively.

View on arXiv
Comments on this paper