ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.19121
73
0

MSG score: A Comprehensive Evaluation for Multi-Scene Video Generation

28 November 2024
Daewon Yoon
Hyungsuk Lee
Wonsik Shin
    VGen
    EGVM
    DiffM
ArXivPDFHTML
Abstract

This paper addresses the metrics required for generating multi-scene videos based on a continuous scenario, as opposed to traditional short video generation. Scenario-based videos require a comprehensive evaluation that considers multiple factors such as character consistency, artistic coherence, aesthetic quality, and the alignment of the generated content with the intended prompt. Additionally, in video generation, unlike single images, the movement of characters across frames introduces potential issues like distortion or unintended changes, which must be effectively evaluated and corrected. In the context of probabilistic models like diffusion, generating the desired scene requires repeated sampling and manual selection, akin to how a film director chooses the best shots from numerous takes. We propose a score-based evaluation benchmark that automates this process, enabling a more objective and efficient assessment of these complexities. This approach allows for the generation of high-quality multi-scene videos by selecting the best outcomes based on automated scoring rather than manual inspection.

View on arXiv
Comments on this paper