79
0
v1v2 (latest)

Power-Efficient Actuation for Insect-Scale Autonomous Underwater Vehicles

Abstract

We present a new evolution of the Very Little Eel-Inspired roBot, the VLEIBot++, a 900-mg swimmer driven by two 10-mg bare high-work density (HWD) actuators, whose functionality is based on the use of shape-memory alloy (SMA) wires. An actuator of this type consumes an average power of about 40 mW during in-air operation. We integrated onboard power and computation into the VLEIBot++ using a custom-built printed circuit board (PCB) and an 11-mAh 3.7-V 507-mg single-cell lithium-ion (Li-Ion) battery, which in conjunction enable autonomous swimming for about 20 min on a single charge. This robot can swim at speeds of up to 18.7 mm/s (0.46 Bl/s) and is the first subgram microswimmer with onboard power, actuation, and computation developed to date. Unfortunately, the approach employed to actuate VLEIBot++ prototypes is infeasible for underwater applications because a typical 10-mg bare SMA-based microactuator requires an average power on the order of 800 mW when operating underwater. To address this issue, we introduce a new 13-mg power-efficient high-performance SMA-based microactuator that can function with similar power requirements (approx. 80 mW on average) and actuation performance (approx. 3 mm at low frequencies) in air and water. This design is based on the use of a sealed flexible air-capsule that encloses the SMA wires that drive the microactuator with the purpose of passively controlling the heat-transfer rate of the thermal system. Furthermore, this new power-efficient encapsulated actuator requires low voltages of excitation (3 to 4 V) and simple power electronics to function. The breakthroughs presented in this paper represent a path towards the creation of insect-scale autonomous underwater vehicles (AUVs).

View on arXiv
@article{longwell2025_2411.18001,
  title={ Power-Efficient Actuation for Insect-Scale Autonomous Underwater Vehicles },
  author={ Cody R. Longwell and Conor K. Trygstad and Nestor O. Perez-Arancibia },
  journal={arXiv preprint arXiv:2411.18001},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.