ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.16668
66
0

Diffusion Features for Zero-Shot 6DoF Object Pose Estimation

25 November 2024
Bernd Von Gimborn
P. Ausserlechner
Markus Vincze
S. Thalhammer
    DiffM
ArXivPDFHTML
Abstract

Zero-shot object pose estimation enables the retrieval of object poses from images without necessitating object-specific training. In recent approaches this is facilitated by vision foundation models (VFM), which are pre-trained models that are effectively general-purpose feature extractors. The characteristics exhibited by these VFMs vary depending on the training data, network architecture, and training paradigm. The prevailing choice in this field are self-supervised Vision Transformers (ViT). This study assesses the influence of Latent Diffusion Model (LDM) backbones on zero-shot pose estimation. In order to facilitate a comparison between the two families of models on a common ground we adopt and modify a recent approach. Therefore, a template-based multi-staged method for estimating poses in a zero-shot fashion using LDMs is presented. The efficacy of the proposed approach is empirically evaluated on three standard datasets for object-specific 6DoF pose estimation. The experiments demonstrate an Average Recall improvement of up to 27% over the ViT baseline. The source code is available at: https://github.com/BvG1993/DZOP.

View on arXiv
Comments on this paper