Creating Scalable AGI: the Open General Intelligence Framework

Recent advancements in Artificial Intelligence (AI), particularly with Large Language Models (LLMs), have led to significant progress in narrow tasks such as image classification, language translation, coding, and writing. However, these models face limitations in reliability and scalability due to their siloed architectures, which are designed to handle only one data modality (data type) at a time. This single modal approach hinders their ability to integrate the complex set of data points required for real-world challenges and problem-solving tasks like medical diagnosis, quality assurance, equipment troubleshooting, and financial decision-making. Addressing these real-world challenges requires a more capable Artificial General Intelligence (AGI) system. Our primary contribution is the development of the Open General Intelligence (OGI) framework, a novel systems architecture that serves as a macro design reference for AGI. The OGI framework adopts a modular approach to the design of intelligent systems, based on the premise that cognition must occur across multiple specialized modules that can seamlessly operate as a single system. OGI integrates these modules using a dynamic processing system and a fabric interconnect, enabling real-time adaptability, multi-modal integration, and scalable processing. The OGI framework consists of three key components: (1) Overall Macro Design Guidance that directs operational design and processing, (2) a Dynamic Processing System that controls routing, primary goals, instructions, and weighting, and (3) Framework Areas, a set of specialized modules that operate cohesively to form a unified cognitive system. By incorporating known principles from human cognition into AI systems, the OGI framework aims to overcome the challenges observed in today's intelligent systems, paving the way for more holistic and context-aware problem-solving capabilities.
View on arXiv