Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection

AI-generated images (AIGIs), such as natural or face images, have become increasingly important yet challenging. In this paper, we start from a new perspective to excavate the reason behind the failure generalization in AIGI detection, named the \textit{asymmetry phenomenon}, where a naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked, which is proved seriously limiting the expressivity and generalization. One potential remedy is incorporating the pre-trained knowledge within the vision foundation models (higher-ranked) to expand the feature space, alleviating the model's overfitting to fake. To this end, we employ Singular Value Decomposition (SVD) to decompose the original feature space into \textit{two orthogonal subspaces}. By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning fake patterns. Compared to existing full-parameters and LoRA-based tuning methods, we explicitly ensure orthogonality, enabling the higher rank of the whole feature space, effectively minimizing overfitting and enhancing generalization. We finally identify a crucial insight: our method implicitly learns \textit{a vital prior that fakes are actually derived from the real}, indicating a hierarchical relationship rather than independence. Modeling this prior, we believe, is essential for achieving superior generalization. Our codes are publicly available at \href{this https URL}{GitHub}.
View on arXiv