ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.13033
74
1

LMM-driven Semantic Image-Text Coding for Ultra Low-bitrate Learned Image Compression

20 November 2024
Shimon Murai
Heming Sun
J. Katto
    VLM
ArXivPDFHTML
Abstract

Supported by powerful generative models, low-bitrate learned image compression (LIC) models utilizing perceptual metrics have become feasible. Some of the most advanced models achieve high compression rates and superior perceptual quality by using image captions as sub-information. This paper demonstrates that using a large multi-modal model (LMM), it is possible to generate captions and compress them within a single model. We also propose a novel semantic-perceptual-oriented fine-tuning method applicable to any LIC network, resulting in a 41.58\% improvement in LPIPS BD-rate compared to existing methods. Our implementation and pre-trained weights are available at https://github.com/tokkiwa/ImageTextCoding.

View on arXiv
Comments on this paper