ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.12924
95
1

Human-In-the-Loop Software Development Agents

19 November 2024
Wannita Takerngsaksiri
Jirat Pasuksmit
Patanamon Thongtanunam
C. Tantithamthavorn
Ruixiong Zhang
Fan Jiang
Jing Li
Evan Cook
K. Chen
Ming Wu
    LLMAG
ArXivPDFHTML
Abstract

Recently, Large Language Models (LLMs)-based multi-agent paradigms for software engineering are introduced to automatically resolve software development tasks (e.g., from a given issue to source code). However, existing work is evaluated based on historical benchmark datasets, rarely considers human feedback at each stage of the automated software development process, and has not been deployed in practice. In this paper, we introduce a Human-in-the-loop LLM-based Agents framework (HULA) for software development that allows software engineers to refine and guide LLMs when generating coding plans and source code for a given task. We design, implement, and deploy the HULA framework into Atlassian JIRA for internal uses. Through a multi-stage evaluation of the HULA framework, Atlassian software engineers perceive that HULA can minimize the overall development time and effort, especially in initiating a coding plan and writing code for straightforward tasks. On the other hand, challenges around code quality remain a concern in some cases. We draw lessons learned and discuss opportunities for future work, which will pave the way for the advancement of LLM-based agents in software development.

View on arXiv
Comments on this paper