ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.12712
62
0

Enhancing Multi-Class Disease Classification: Neoplasms, Cardiovascular, Nervous System, and Digestive Disorders Using Advanced LLMs

19 November 2024
Ahmed Akib Jawad Karim
Muhammad Zawad Mahmud
Samiha Islam
Aznur Azam
ArXivPDFHTML
Abstract

In this research, we explored the improvement in terms of multi-class disease classification via pre-trained language models over Medical-Abstracts-TC-Corpus that spans five medical conditions. We excluded non-cancer conditions and examined four specific diseases. We assessed four LLMs, BioBERT, XLNet, and BERT, as well as a novel base model (Last-BERT). BioBERT, which was pre-trained on medical data, demonstrated superior performance in medical text classification (97% accuracy). Surprisingly, XLNet followed closely (96% accuracy), demonstrating its generalizability across domains even though it was not pre-trained on medical data. LastBERT, a custom model based on the lighter version of BERT, also proved competitive with 87.10% accuracy (just under BERT's 89.33%). Our findings confirm the importance of specialized models such as BioBERT and also support impressions around more general solutions like XLNet and well-tuned transformer architectures with fewer parameters (in this case, LastBERT) in medical domain tasks.

View on arXiv
Comments on this paper