ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.11530
67
0

SeqProFT: Applying LoRA Finetuning for Sequence-only Protein Property Predictions

18 November 2024
Shuo Zhang
Jian K. Liu
ArXivPDFHTML
Abstract

Protein language models (PLMs) are capable of learning the relationships between protein sequences and functions by treating amino acid sequences as textual data in a self-supervised manner. However, fine-tuning these models typically demands substantial computational resources and time, with results that may not always be optimized for specific tasks. To overcome these challenges, this study employs the LoRA method to perform end-to-end fine-tuning of the ESM-2 model specifically for protein property prediction tasks, utilizing only sequence information. Additionally, a multi-head attention mechanism is integrated into the downstream network to combine sequence features with contact map information, thereby enhancing the model's comprehension of protein sequences. Experimental results of extensive classification and regression tasks demonstrate that the fine-tuned model achieves strong performance and faster convergence across multiple regression and classification tasks.

View on arXiv
Comments on this paper