ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.10680
28
1

Two-layer consensus based on master-slave consortium chain data sharing for Internet of Vehicles

16 November 2024
Feng Zhao
Benchang Yang
Chunhai Li
Chuan Zhang
Liehuang Zhu
Guoling Liang
ArXivPDFHTML
Abstract

Due to insufficient scalability, the existing consortium chain cannot meet the requirements of low latency, high throughput, and high security when applied to Internet of Vehicles (IoV) data sharing. Therefore, we propose a two-layer consensus algorithm based on the master-slave consortium chain - Weighted Raft and Byzantine Fault Tolerance (WRBFT). The intra-group consensus of the WRBFT algorithm adopts weighted Raft, and the best node is selected as the master node to lead the intra-group consensus by comprehensively evaluating the signal-to-noise ratio (SNR), data processing capacity and storage capacity of the nodes. The inter-group consensus adopts practical Byzantine fault tolerance (PBFT) based on BLS aggregate signature with nonlinear coefficients to ensure that the inter-group consensus can tolerate 1/3 of Byzantine nodes. At the same time, the verifiable random function (VRF) is used to select the master node of the inter-group consensus to ensure the randomness of the master node. A large number of experimental results show that the proposed WRBFT algorithm reduces delay, and improves throughput and system security.

View on arXiv
Comments on this paper