ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.07076
140
2

StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification

11 November 2024
Yichen He
Yuan Lin
Jianchao Wu
Hanchong Zhang
Yuchen Zhang
Ruicheng Le
    VGen
    VLM
ArXivPDFHTML
Abstract

Existing large vision-language models (LVLMs) are largely limited to processing short, seconds-long videos and struggle with generating coherent descriptions for extended video spanning minutes or more. Long video description introduces new challenges, such as consistent character identification and plot-level descriptions incorporating both visual and audio information. To address these, we figure out audio-visual character identification, matching character names to each dialogue, as a key factor. We propose StoryTeller, a system for generating dense descriptions of long videos, incorporating both low-level visual concepts and high-level plot information. StoryTeller uses a multimodal large language model that integrates visual, audio, and text modalities to perform audio-visual character identification on minute-long video clips. The results are then fed into a LVLM to enhance consistency of video description. We validate our approach on movie description tasks and introduce MovieStory101, a dataset with dense descriptions for three-minute movie clips. To evaluate long video descriptions, we create StoryQA, a large set of multiple-choice questions for MovieStory101 test set. We assess descriptions by inputting them into GPT-4 to answer these questions, using accuracy as an automatic evaluation metric. Experiments show that StoryTeller outperforms all open and closed-source baselines on StoryQA, achieving 9.5% higher accuracy than the strongest baseline, Gemini-1.5-pro, and demonstrating a +15.56% advantage in human side-by-side evaluations. Additionally, incorporating audio-visual character identification from StoryTeller improves the performance of all video description models, with Gemini-1.5-pro and GPT-4o showing relative improvement of 5.5% and 13.0%, respectively, in accuracy on StoryQA.

View on arXiv
@article{he2025_2411.07076,
  title={ StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification },
  author={ Yichen He and Yuan Lin and Jianchao Wu and Hanchong Zhang and Yuchen Zhang and Ruicheng Le },
  journal={arXiv preprint arXiv:2411.07076},
  year={ 2025 }
}
Comments on this paper