ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.06493
52
4

LProtector: An LLM-driven Vulnerability Detection System

10 November 2024
Ze Sheng
Fenghua Wu
Xiangwu Zuo
Chao Li
Yuxin Qiao
Lei Hang
ArXivPDFHTML
Abstract

This paper presents LProtector, an automated vulnerability detection system for C/C++ codebases driven by the large language model (LLM) GPT-4o and Retrieval-Augmented Generation (RAG). As software complexity grows, traditional methods face challenges in detecting vulnerabilities effectively. LProtector leverages GPT-4o's powerful code comprehension and generation capabilities to perform binary classification and identify vulnerabilities within target codebases. We conducted experiments on the Big-Vul dataset, showing that LProtector outperforms two state-of-the-art baselines in terms of F1 score, demonstrating the potential of integrating LLMs with vulnerability detection.

View on arXiv
Comments on this paper