ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.06119
36
0

Scalable, Tokenization-Free Diffusion Model Architectures with Efficient Initial Convolution and Fixed-Size Reusable Structures for On-Device Image Generation

9 November 2024
Sanchar Palit
Sathya Veera Reddy Dendi
Mallikarjuna Talluri
Raj Narayana Gadde
ArXivPDFHTML
Abstract

Vision Transformers and U-Net architectures have been widely adopted in the implementation of Diffusion Models. However, each architecture presents specific challenges while realizing them on-device. Vision Transformers require positional embedding to maintain correspondence between the tokens processed by the transformer, although they offer the advantage of using fixed-size, reusable repetitive blocks following tokenization. The U-Net architecture lacks these attributes, as it utilizes variable-sized intermediate blocks for down-convolution and up-convolution in the noise estimation backbone for the diffusion process. To address these issues, we propose an architecture that utilizes a fixed-size, reusable transformer block as a core structure, making it more suitable for hardware implementation. Our architecture is characterized by low complexity, token-free design, absence of positional embeddings, uniformity, and scalability, making it highly suitable for deployment on mobile and resource-constrained devices. The proposed model exhibit competitive and consistent performance across both unconditional and conditional image generation tasks. The model achieved a state-of-the-art FID score of 1.6 on unconditional image generation with the CelebA.

View on arXiv
Comments on this paper