ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.02989
60
1

Growing a Tail: Increasing Output Diversity in Large Language Models

5 November 2024
Michal Shur-Ofry
Bar Horowitz-Amsalem
Adir Rahamim
Yonatan Belinkov
    ALM
ArXivPDFHTML
Abstract

How diverse are the outputs of large language models when diversity is desired? We examine the diversity of responses of various models to questions with multiple possible answers, comparing them with human responses. Our findings suggest that models' outputs are highly concentrated, reflecting a narrow, mainstream 'worldview', in comparison to humans, whose responses exhibit a much longer-tail. We examine three ways to increase models' output diversity: 1) increasing generation randomness via temperature sampling; 2) prompting models to answer from diverse perspectives; 3) aggregating outputs from several models. A combination of these measures significantly increases models' output diversity, reaching that of humans. We discuss implications of these findings for AI policy that wishes to preserve cultural diversity, an essential building block of a democratic social fabric.

View on arXiv
Comments on this paper