ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.01267
28
0

ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations

2 November 2024
Mingze Gong
Lei Chen
Jia Li
    DiffM
    AI4TS
ArXivPDFHTML
Abstract

Accurate forecasting of spatiotemporal data remains challenging due to complex spatial dependencies and temporal dynamics. The inherent uncertainty and variability in such data often render deterministic models insufficient, prompting a shift towards probabilistic approaches, where diffusion-based generative models have emerged as effective solutions. In this paper, we present ProGen, a novel framework for probabilistic spatiotemporal time series forecasting that leverages Stochastic Differential Equations (SDEs) and diffusion-based generative modeling techniques in the continuous domain. By integrating a novel denoising score model, graph neural networks, and a tailored SDE, ProGen provides a robust solution that effectively captures spatiotemporal dependencies while managing uncertainty. Our extensive experiments on four benchmark traffic datasets demonstrate that ProGen outperforms state-of-the-art deterministic and probabilistic models. This work contributes a continuous, diffusion-based generative approach to spatiotemporal forecasting, paving the way for future research in probabilistic modeling and stochastic processes.

View on arXiv
Comments on this paper