ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.00728
35
0

Multi-Agent Deep Q-Network with Layer-based Communication Channel for Autonomous Internal Logistics Vehicle Scheduling in Smart Manufacturing

1 November 2024
Mohammad Feizabadi
Arman Hosseini
Zakaria Yahouni
ArXivPDFHTML
Abstract

In smart manufacturing, scheduling autonomous internal logistic vehicles is crucial for optimizing operational efficiency. This paper proposes a multi-agent deep Q-network (MADQN) with a layer-based communication channel (LBCC) to address this challenge. The main goals are to minimize total job tardiness, reduce the number of tardy jobs, and lower vehicle energy consumption. The method is evaluated against nine well-known scheduling heuristics, demonstrating its effectiveness in handling dynamic job shop behaviors like job arrivals and workstation unavailabilities. The approach also proves scalable, maintaining performance across different layouts and larger problem instances, highlighting the robustness and adaptability of MADQN with LBCC in smart manufacturing.

View on arXiv
Comments on this paper