ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.21481
22
1

A Mathematical Analysis of Neural Operator Behaviors

28 October 2024
Vu-Anh Le
Mehmet Dik
    AI4CE
ArXivPDFHTML
Abstract

Neural operators have emerged as transformative tools for learning mappings between infinite-dimensional function spaces, offering useful applications in solving complex partial differential equations (PDEs). This paper presents a rigorous mathematical framework for analyzing the behaviors of neural operators, with a focus on their stability, convergence, clustering dynamics, universality, and generalization error. By proposing a list of novel theorems, we provide stability bounds in Sobolev spaces and demonstrate clustering in function space via gradient flow interpretation, guiding neural operator design and optimization. Based on these theoretical gurantees, we aim to offer clear and unified guidance in a single setting for the future design of neural operator-based methods.

View on arXiv
Comments on this paper