ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.21325
22
0

Just Propagate: Unifying Matrix Factorization, Network Embedding, and LightGCN for Link Prediction

26 October 2024
Haoxin Liu
ArXivPDFHTML
Abstract

Link prediction is a fundamental task in graph analysis. Despite the success of various graph-based machine learning models for link prediction, there lacks a general understanding of different models. In this paper, we propose a unified framework for link prediction that covers matrix factorization and representative network embedding and graph neural network methods. Our preliminary methodological and empirical analyses further reveal several key design factors based on our unified framework. We believe our results could deepen our understanding and inspire novel designs for link prediction methods.

View on arXiv
Comments on this paper