ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20780
25
0

Scaling-based Data Augmentation for Generative Models and its Theoretical Extension

28 October 2024
Yoshitaka Koike
Takumi Nakagawa
Hiroki Waida
Takafumi Kanamori
    DiffM
ArXivPDFHTML
Abstract

This paper studies stable learning methods for generative models that enable high-quality data generation. Noise injection is commonly used to stabilize learning. However, selecting a suitable noise distribution is challenging. Diffusion-GAN, a recently developed method, addresses this by using the diffusion process with a timestep-dependent discriminator. We investigate Diffusion-GAN and reveal that data scaling is a key component for stable learning and high-quality data generation. Building on our findings, we propose a learning algorithm, Scale-GAN, that uses data scaling and variance-based regularization. Furthermore, we theoretically prove that data scaling controls the bias-variance trade-off of the estimation error bound. As a theoretical extension, we consider GAN with invertible data augmentations. Comparative evaluations on benchmark datasets demonstrate the effectiveness of our method in improving stability and accuracy.

View on arXiv
Comments on this paper