ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20248
18
0

Convergence Guarantees for the DeepWalk Embedding on Block Models

26 October 2024
Christopher Harker
Aditya Bhaskara
ArXivPDFHTML
Abstract

Graph embeddings have emerged as a powerful tool for understanding the structure of graphs. Unlike classical spectral methods, recent methods such as DeepWalk, Node2Vec, etc. are based on solving nonlinear optimization problems on the graph, using local information obtained by performing random walks. These techniques have empirically been shown to produce ''better'' embeddings than their classical counterparts. However, due to their reliance on solving a nonconvex optimization problem, obtaining theoretical guarantees on the properties of the solution has remained a challenge, even for simple classes of graphs. In this work, we show convergence properties for the DeepWalk algorithm on graphs obtained from the Stochastic Block Model (SBM). Despite being simplistic, the SBM has proved to be a classic model for analyzing the behavior of algorithms on large graphs. Our results mirror the existing ones for spectral embeddings on SBMs, showing that even in the case of one-dimensional embeddings, the output of the DeepWalk algorithm provably recovers the cluster structure with high probability.

View on arXiv
Comments on this paper