ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.19835
11
1

Multidimensional Knowledge Graph Embeddings for International Trade Flow Analysis

19 October 2024
Durgesh Nandini
Simon Bloethner
Mirco Schoenfeld
Mario Larch
ArXivPDFHTML
Abstract

Understanding the complex dynamics of high-dimensional, contingent, and strongly nonlinear economic data, often shaped by multiplicative processes, poses significant challenges for traditional regression methods as such methods offer limited capacity to capture the structural changes they feature. To address this, we propose leveraging the potential of knowledge graph embeddings for economic trade data, in particular, to predict international trade relationships. We implement KonecoKG, a knowledge graph representation of economic trade data with multidimensional relationships using SDM-RDFizer, and transform the relationships into a knowledge graph embedding using AmpliGraph.

View on arXiv
Comments on this paper