ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.19821
23
1

Explainable AI in Handwriting Detection for Dyslexia Using Transfer Learning

18 October 2024
Mahmoud Robaa
Mazen Balat
Rewaa Awaad
Esraa Omar
Salah A. Aly
ArXiv (abs)PDFHTML
Abstract

Dyslexia is one of the most common learning disorders, often characterized by distinct features in handwriting. Early detection is essential for effective intervention. In this paper, we propose an explainable AI (XAI) framework for dyslexia detection through handwriting analysis, utilizing transfer learning and transformer-based models. Our approach surpasses state-of-the-art methods, achieving a test accuracy of 0.9958, while ensuring model interpretability through Grad-CAM visualizations that highlight the critical handwriting features influencing model decisions. The main contributions of this work include the integration of XAI for enhanced interpretability, adaptation to diverse languages and writing systems, and demonstration of the method's global applicability. This framework not only improves diagnostic accuracy but also fosters trust and understanding among educators, clinicians, and parents, supporting earlier diagnoses and the development of personalized educational strategies.

View on arXiv
Comments on this paper