This paper identifies and analyzes applications in which Large Language Models (LLMs) can make Internet of Things (IoT) networks more intelligent and responsive through three case studies from critical topics: DDoS attack detection, macroprogramming over IoT systems, and sensor data processing. Our results reveal that the GPT model under few-shot learning achieves 87.6% detection accuracy, whereas the fine-tuned GPT increases the value to 94.9%. Given a macroprogramming framework, the GPT model is capable of writing scripts using high-level functions from the framework to handle possible incidents. Moreover, the GPT model shows efficacy in processing a vast amount of sensor data by offering fast and high-quality responses, which comprise expected results and summarized insights. Overall, the model demonstrates its potential to power a natural language interface. We hope that researchers will find these case studies inspiring to develop further.
View on arXiv