ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.18001
21
0

Benchmarking Foundation Models on Exceptional Cases: Dataset Creation and Validation

23 October 2024
Suho Kang
Jungyang Park
Joonseo Ha
SoMin Kim
JinHyeong Kim
Subeen Park
Kyungwoo Song
    LRM
ArXivPDFHTML
Abstract

Foundation models (FMs) have achieved significant success across various tasks, leading to research on benchmarks for reasoning abilities. However, there is a lack of studies on FMs performance in exceptional scenarios, which we define as out-of-distribution (OOD) reasoning tasks. This paper is the first to address these cases, developing a novel dataset for evaluation of FMs across multiple modalities, including graphic novels, calligraphy, news articles, and lyrics. It includes tasks for instance classification, character recognition, token prediction, and text generation. The paper also proposes prompt engineering techniques like Chain-of-Thought (CoT) and CoT+Few-Shot to enhance performance. Validation of FMs using various methods revealed improvements. The code repository is accessible at: https://github.com/MLAI-Yonsei/ExceptionalBenchmark

View on arXiv
Comments on this paper