ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.17427
24
0

SigCLR: Sigmoid Contrastive Learning of Visual Representations

22 October 2024
Ömer Veysel Çağatan
ArXivPDFHTML
Abstract

We propose SigCLR: Sigmoid Contrastive Learning of Visual Representations. SigCLR utilizes the logistic loss that only operates on pairs and does not require a global view as in the cross-entropy loss used in SimCLR. We show that logistic loss shows competitive performance on CIFAR-10, CIFAR-100, and Tiny-IN compared to other established SSL objectives. Our findings verify the importance of learnable bias as in the case of SigLUP, however, it requires a fixed temperature as in the SimCLR to excel. Overall, SigCLR is a promising replacement for the SimCLR which is ubiquitous and has shown tremendous success in various domains.

View on arXiv
Comments on this paper