ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.16333
16
0

Conformal Predictive Portfolio Selection

19 October 2024
Masahiro Kato
ArXivPDFHTML
Abstract

This study examines portfolio selection using predictive models for portfolio returns. Portfolio selection is a fundamental task in finance, and a variety of methods have been developed to achieve this goal. For instance, the mean-variance approach constructs portfolios by balancing the trade-off between the mean and variance of asset returns, while the quantile-based approach optimizes portfolios by considering tail risk. These methods often depend on distributional information estimated from historical data using predictive models, each of which carries its own uncertainty. To address this, we propose a framework for predictive portfolio selection via conformal prediction , called \emph{Conformal Predictive Portfolio Selection} (CPPS). Our approach forecasts future portfolio returns, computes the corresponding prediction intervals, and selects the portfolio of interest based on these intervals. The framework is flexible and can accommodate a wide range of predictive models, including autoregressive (AR) models, random forests, and neural networks. We demonstrate the effectiveness of the CPPS framework by applying it to an AR model and validate its performance through empirical studies, showing that it delivers superior returns compared to simpler strategies.

View on arXiv
@article{kato2025_2410.16333,
  title={ Conformal Predictive Portfolio Selection },
  author={ Masahiro Kato },
  journal={arXiv preprint arXiv:2410.16333},
  year={ 2025 }
}
Comments on this paper