ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.16325
26
0

This Candidate is [MASK]. Letters of Reference and Job Market Outcomes using LLMs

18 October 2024
Fabian Slonimczyk
ArXiv (abs)PDFHTML
Abstract

I implement a prompt-based learning strategy to extract measures of sentiment and other features from confidential reference letters. I show that the contents of reference letters is clearly reflected in the performance of job market candidates in the Economics academic job market. In contrast, applying traditional ``bag-of-words'' approaches produces measures of sentiment that, while positively correlated to my LLM-based measure, are not predictive of job market outcomes. Using a random forest, I show that both letter quality and length are predictive of success in the job market. Letters authored by advisers appear to be as important as those written by other referees.

View on arXiv
Comments on this paper