ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.15517
16
0

SceneGraMMi: Scene Graph-boosted Hybrid-fusion for Multi-Modal Misinformation Veracity Prediction

20 October 2024
Swarang Joshi
Siddharth Mavani
Joel Alex
Arnav Negi
Rahul Mishra
Ponnurangam Kumaraguru
ArXivPDFHTML
Abstract

Misinformation undermines individual knowledge and affects broader societal narratives. Despite growing interest in the research community in multi-modal misinformation detection, existing methods exhibit limitations in capturing semantic cues, key regions, and cross-modal similarities within multi-modal datasets. We propose SceneGraMMi, a Scene Graph-boosted Hybrid-fusion approach for Multi-modal Misinformation veracity prediction, which integrates scene graphs across different modalities to improve detection performance. Experimental results across four benchmark datasets show that SceneGraMMi consistently outperforms state-of-the-art methods. In a comprehensive ablation study, we highlight the contribution of each component, while Shapley values are employed to examine the explainability of the model's decision-making process.

View on arXiv
Comments on this paper