ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.15442
24
2

Exploring Social Desirability Response Bias in Large Language Models: Evidence from GPT-4 Simulations

20 October 2024
Sanguk Lee
Kai-Qi Yang
Tai-Quan Peng
Ruth Heo
Hui Liu
ArXivPDFHTML
Abstract

Large language models (LLMs) are employed to simulate human-like responses in social surveys, yet it remains unclear if they develop biases like social desirability response (SDR) bias. To investigate this, GPT-4 was assigned personas from four societies, using data from the 2022 Gallup World Poll. These synthetic samples were then prompted with or without a commitment statement intended to induce SDR. The results were mixed. While the commitment statement increased SDR index scores, suggesting SDR bias, it reduced civic engagement scores, indicating an opposite trend. Additional findings revealed demographic associations with SDR scores and showed that the commitment statement had limited impact on GPT-4's predictive performance. The study underscores potential avenues for using LLMs to investigate biases in both humans and LLMs themselves.

View on arXiv
Comments on this paper