ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.14696
32
1

REBIND: Enhancing ground-state molecular conformation via force-based graph rewiring

4 October 2024
Taewon Kim
Hyunjin Seo
Sungsoo Ahn
Eunho Yang
    AI4CE
ArXivPDFHTML
Abstract

Predicting the ground-state 3D molecular conformations from 2D molecular graphs is critical in computational chemistry due to its profound impact on molecular properties. Deep learning (DL) approaches have recently emerged as promising alternatives to computationally-heavy classical methods such as density functional theory (DFT). However, we discover that existing DL methods inadequately model inter-atomic forces, particularly for non-bonded atomic pairs, due to their naive usage of bonds and pairwise distances. Consequently, significant prediction errors occur for atoms with low degree (i.e., low coordination numbers) whose conformations are primarily influenced by non-bonded interactions. To address this, we propose REBIND, a novel framework that rewires molecular graphs by adding edges based on the Lennard-Jones potential to capture non-bonded interactions for low-degree atoms. Experimental results demonstrate that REBIND significantly outperforms state-of-the-art methods across various molecular sizes, achieving up to a 20\% reduction in prediction error.

View on arXiv
Comments on this paper