Transformer Guided Coevolution: Improved Team Selection in Multiagent Adversarial Team Games

Abstract
We consider the problem of team selection within multiagent adversarial team games. We propose BERTeam, a novel algorithm that uses a transformer-based deep neural network with Masked Language Model training to select the best team of players from a trained population. We integrate this with coevolutionary deep reinforcement learning, which trains a diverse set of individual players to choose from. We test our algorithm in the multiagent adversarial game Marine Capture-The-Flag, and find that BERTeam learns non-trivial team compositions that perform well against unseen opponents. For this game, we find that BERTeam outperforms MCAA, an algorithm that similarly optimizes team selection.
View on arXivComments on this paper