ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.12955
21
0

Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations

16 October 2024
Lu Pang
Tao Sun
Weimin Lyu
Haibin Ling
Cheng Chen
    AAML
ArXivPDFHTML
Abstract

Recently, backdoor attack has become an increasing security threat to deep neural networks and drawn the attention of researchers. Backdoor attacks exploit vulnerabilities in third-party pretrained models during the training phase, enabling them to behave normally for clean samples and mispredict for samples with specific triggers. Existing backdoor attacks mainly focus on balanced datasets. However, real-world datasets often follow long-tailed distributions. In this paper, for the first time, we explore backdoor attack on such datasets. Specifically, we first analyze the influence of data imbalance on backdoor attack. Based on our analysis, we propose an effective backdoor attack named Dynamic Data Augmentation Operation (D2^22AO). We design D2^22AO selectors to select operations depending jointly on the class, sample type (clean vs. backdoored) and sample features. Meanwhile, we develop a trigger generator to generate sample-specific triggers. Through simultaneous optimization of the backdoored model and trigger generator, guided by dynamic data augmentation operation selectors, we achieve significant advancements. Extensive experiments demonstrate that our method can achieve the state-of-the-art attack performance while preserving the clean accuracy.

View on arXiv
Comments on this paper