ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.12577
32
1

On the Utility of Domain Modeling Assistance with Large Language Models

16 October 2024
Meriem Ben Chaaben
Lola Burgueño
Istvan David
H. Sahraoui
ArXivPDFHTML
Abstract

Model-driven engineering (MDE) simplifies software development through abstraction, yet challenges such as time constraints, incomplete domain understanding, and adherence to syntactic constraints hinder the design process. This paper presents a study to evaluate the usefulness of a novel approach utilizing large language models (LLMs) and few-shot prompt learning to assist in domain modeling. The aim of this approach is to overcome the need for extensive training of AI-based completion models on scarce domain-specific datasets and to offer versatile support for various modeling activities, providing valuable recommendations to software modelers. To support this approach, we developed MAGDA, a user-friendly tool, through which we conduct a user study and assess the real-world applicability of our approach in the context of domain modeling, offering valuable insights into its usability and effectiveness.

View on arXiv
Comments on this paper