ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.12524
18
1

MambaPainter: Neural Stroke-Based Rendering in a Single Step

16 October 2024
Tomoya Sawada
Marie Katsurai
    Mamba
ArXivPDFHTML
Abstract

Stroke-based rendering aims to reconstruct an input image into an oil painting style by predicting brush stroke sequences. Conventional methods perform this prediction stroke-by-stroke or require multiple inference steps due to the limitations of a predictable number of strokes. This procedure leads to inefficient translation speed, limiting their practicality. In this study, we propose MambaPainter, capable of predicting a sequence of over 100 brush strokes in a single inference step, resulting in rapid translation. We achieve this sequence prediction by incorporating the selective state-space model. Additionally, we introduce a simple extension to patch-based rendering, which we use to translate high-resolution images, improving the visual quality with a minimal increase in computational cost. Experimental results demonstrate that MambaPainter can efficiently translate inputs to oil painting-style images compared to state-of-the-art methods. The codes are available at https://github.com/STomoya/MambaPainter.

View on arXiv
Comments on this paper