ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.11127
30
1

IsoChronoMeter: A simple and effective isochronic translation evaluation metric

14 October 2024
Nikolai Rozanov
Vikentiy Pankov
Dmitrii Mukhutdinov
Dima Vypirailenko
ArXivPDFHTML
Abstract

Machine translation (MT) has come a long way and is readily employed in production systems to serve millions of users daily. With the recent advances in generative AI, a new form of translation is becoming possible - video dubbing. This work motivates the importance of isochronic translation, especially in the context of automatic dubbing, and introduces `IsoChronoMeter' (ICM). ICM is a simple yet effective metric to measure isochrony of translations in a scalable and resource-efficient way without the need for gold data, based on state-of-the-art text-to-speech (TTS) duration predictors. We motivate IsoChronoMeter and demonstrate its effectiveness. Using ICM we demonstrate the shortcomings of state-of-the-art translation systems and show the need for new methods. We release the code at this URL: \url{https://github.com/braskai/isochronometer}.

View on arXiv
Comments on this paper